Mark scheme - Materials

		Answer/Indicative content	Mark s	Guidance
1		B	1	Examiner's Comments This question was based on the simple understanding of compression of material in the form of a concrete slab. About two thirds of the candidates opted for the correct answer B. The majority of the remaining candidates opted for C. Point C of the slab would be under maximum tension. Only a very small number of candidates, mainly from the lower quartile, went for either A or D.
		Total	1	
2		C	1	
		Total	1	
3		C	1	
		Total	1	
4		C	1	
		Total	1	
5		D	1	Examiner's Comments The tension for both wires is the same, yet wire X has half of the crosssectional area. This means the stress for X will be twice that of Y . Strain $=$ stress/Young modulus, so with half of the stress and (120/200) of the Young modulus, the strain for X will be $2 \times(200 / 120)$ or times that of the strain for Y. The original lengths for X and Y are the same, so the extension of X will be 3.3 times that of Y.
		Total	1	
6		D	1	
		Total	1	
7		C	1	
		Total	1	
8		D	1	
		Total	1	
9		B	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must

3.4 Materials

				endeavour to use a variety of quick techniques when answering multiple choice questions.
		Total	1	
10		D	1	
		Total	1	
$\begin{aligned} & 1 \\ & 1 \end{aligned}$		D	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
		Total	1	
1		D	1	
		Total	1	
1 3		1.6 ($\times 10^{-3} \mathrm{~m}$).	B1	
		Total	1	
14		The maximum (tensile) stress a material can withstand (before it breaks)	B1	Examiner's Comments Ultimate tensile strength is the maximum stress a material can withstand without breaking or failing. The most common incorrect answer included descriptions of force rather than stress.
		Total	1	
15		D	1	
		Total	1	
6	a	F / N e/cm 0 $\mathbf{0 . 0}$ 0.49 $\mathbf{1 . 0}$ 0.98 $\mathbf{1 . 8}$ 1.47 2.8 1.96 3.6 2.45 4.6	B1	Note Column heading required and values in table. Allow 0 for 0.0 Not 1 for 1.0 Examiner's Comments A surprisingly number of candidates either did not include the heading in the table or wrote " 0.9 " or " 1 " to one significant figure rather than " 1.0 ".
	b	y-axis labelled correctly e/cm y-axis scale is simple and uses at least half the graph paper Data points plotted correctly.	B1 B1 B1	Allow extension / cm or e(cm) for e/cm Note axis tick labels must be at least every two large squares $(4 \mathrm{~cm})$ Check two data points $(0.98,1.8)$ and $(2.45,4.6)$ Thickness of each point must be less than half a small square

3.4 Materials

	Straight line of best fit drawn with a straight edge / ruler	B1	Not freehand / wobbly line Examiner's Comments The graph was drawn well with most candidates labelling the axis and using a simple scale which covered more than half the y-axis. Occasionally candidates lost a mark because of a miss-plot.
c	Gradient in the range 1.80 to 1.94	B1	Allow 1.8 or 1.9 OR 0.018 or 0.019 Not 2 OR 0.02 Ignore POT errors Ignore significant figures Examiner's Comments This question was well answered. It was pleasing to see that the majority of the candidates clearly indicated the points on their line used to determine the gradient.
d	$k_{2}=\frac{1}{\text { gradient }}=\frac{1}{(\mathrm{c})}$ Correct value for k_{2} and correct unit $\mathrm{N} \mathrm{cm}^{-1}$ or $\mathrm{N} \mathrm{m}^{-1}$ and given to 2 or 3 significant figures	C1 A1	Note expect about $0.55\left(\mathrm{~N} \mathrm{~cm}^{-1}\right)$ or $55\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ Note unit must be with correct power of ten Examiner's Comments In this question candidates were required to use the gradient value to determine a value for the spring constant. Many candidates did not realise that the spring constant was the inverse of the gradient value. A common error was determining k and then dividing it by two. This question also required candidates to include a suitable unit and give the answer to an appropriate number of significant figures. Some candidates made a power of ten error by not converting centimetres to metres; other candidates either gave the answer to one significant figure or four or five significant figures.
e	Hooke's law: Extension is (directly) proportional to the load (provided elastic limit not exceeded) Graph is not a straight line passing through the origin so Hooke's law is not obeyed OR Graph is a straight line passing through the origin so Hooke's law is obeyed	B1 B1 B1	Examiner's Comments A good number of candidates quoted Hooke's law; candidates should be encouraged to define any symbols used. Many candidates stated that to prove a directly proportional relationship a straight line should be produced but omitted to state that the straight line should pass through the origin.
f	$k_{1}=2 \times(\mathbf{d})$ or springs in series $=k$ /n	C1 A1	Allow $F=k_{1} e=k_{2} 2 e=k_{3} 3 e$ Note 2:3 scores one mark Allow 0.66, 0.67 Examiner's Comments Candidates found this part difficult; it was often omitted and where candidates did attempt it they ended up with the inverse ratio of 1.5 .

3.4 Materials

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 12 \& \\
\hline 1
7 \& a \& arrow down through centre of ball labeled weight or W or mg or 1.2 N \& B1 \& \begin{tabular}{l}
zero if any other arrows or forces present \\
Examiner's Comments \\
There were some carelessly drawn arrows on the diagram but otherwise this was done well. There were some arrows labelled centripetal force.
\end{tabular} \\
\hline \& b \& ```
(horizontally) mv 2/r (or mr\omega}\mp@subsup{}{2}{2})=
sin}
and (vertically) W or mg=T cos
0
(tan 0= v}\mp@subsup{\textrm{v}}{}{2}/\textrm{rg}\mathrm{ or rw
tan}0=0.045\times4\times9.87\times2.2 /
9.81 or 0.48 / 1.2 (= 0.40)
0=22
``` \& M1

A1

A0 \& | accept figures in place of algebra, $\begin{aligned} & \mathrm{r}=0.045 \mathrm{~m}^{\mathrm{v}}=0.42 \mathrm{~m} \mathrm{~s}^{-1} \omega=3 \pi \mathrm{rad} \mathrm{~s}^{-1} ; \\ & \mathrm{r} \omega^{2}=4.0 \mathrm{~m} \mathrm{~s}^{-2} ; \\ & \mathrm{W}=1.2 \mathrm{~N} \text { and } \mathrm{m}=0.12 \mathrm{~kg} \text { and } \\ & \mathrm{mr} \omega^{2}=0.48 \mathrm{~N} \end{aligned}$ |
| :--- |
| accept labelled triangle of forces diagram |
| N.B. this is a show that $Q$; sufficient calculation must be present to indicate that the candidate has not worked back from the answer | <br>

\hline \& \& \[
$$
\begin{aligned}
& \mathrm{k}=\left(\mathrm{mg} / \mathrm{x}_{0}=1.2 / 0.050\right)=24(\mathrm{~N} \\
& \left.\mathrm{m}^{-1}\right) \\
& (\mathrm{T}=\mathrm{mg} / \cos \theta=\mathrm{kx} \text { giving }) \\
& \mathrm{x}=1.2 / 24 \cos 22 \\
& \mathrm{x}=0.054(\mathrm{~m})
\end{aligned}
$$

\] \& | C1 |
| :--- |
| C1 |
| A1 | \& | or solution by ratios |
| :--- |
| Examiner's Comments |
| About half of the candidates completed the angle calculation successfully with |
| a slightly smaller number finding the correct extension of the string. | <br>

\hline \& c \& $$
\begin{aligned}
& \left(y=1 / 2 g t^{2}=\right) 0.18=0.5 \times 9.81 \times t^{2} \\
& \text { giving } t=0.19(s) \\
& (x=v t=) 0.42 \times 0.19=0.08(\mathrm{~m}) \\
& \text { distance }=\sqrt{ }\left(r^{2}+x^{2}\right)=\sqrt{ }(0.0020+ \\
& 0.0064)=0.092(\mathrm{~m})
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 1 \\
& \mathrm{C} 1 \\
& \mathrm{~A} 1
\end{aligned}
$$

\] \& | alt: projectile motion: $x=v t, y=1 / 2 g t^{2}$ $y=1 / 2 g(x / v)^{2}$ |
| :--- |
| ecf (b)i for $v ; x^{2}=2 y^{2} / g$ $=2 \times 0.18 \times 0.42^{2} / 9.81$ |
| Examiner's Comments |
| About half of the candidates found the time for the ball to fall to the bench. Most then managed to find the horizontal distance from the point of release, but half forgot that the point of reference in the question was the centre of rotation so failing to complete the calculation. | <br>


\hline \& d \& | T increases or string stretches or angle $\theta$ increases |
| :--- |
| to provide / create a larger centripetal force | \& M1

A1 \& | allow $\mathrm{mv}^{2} / \mathrm{r}$ or $\mathrm{mr}^{2}$ in place of centripetal force causality must be implied to gain the A mark |
| :--- |
| Examiner's Comments |
| About half of the candidates appreciated that the tension in the string increased or that the angle of the string to the vertical increased. Most answers gave the impression that the centripetal force was a real force rather than its provision being necessary for the ball to follow a circular path | <br>

\hline \& \& Total \& 12 \& <br>
\hline
\end{tabular}

### 3.4 Materials

| 1 8 | D | 1 |  |
| :---: | :---: | :---: | :---: |
|  | Total | 1 |  |
| 1 | The extension of each spring is halved because the force in each spring is halved. <br> (Hence the force constant is $2 k$.) | B1 | Allow $F=\mathrm{kx}, x$ is halved for the same $F$, hence $k$ doubles. |
|  | Total | 1 |  |
| 2 0 | B | 1 |  |
|  | Total | 1 |  |
| 2 1 | B | 1 | Examiner's Comments <br> This question was slightly more challenging. |
|  | Total | 1 |  |
| 2 | A | 1 |  |
|  | Total | 1 |  |
| 2 3 | C | 1 |  |
|  | Total | 1 |  |
| 2 | C | 1 |  |
|  | Total | 1 |  |
| 2 5 | C | 1 |  |
|  | Total | 1 |  |
| 2 | D | 1 | Examiner's Comments <br> The Young modulus is found by calculating the initial gradient of the material's stress-strain graph. The initial portion appears to be a straight line from the origin to the point $(0.1,120)$. The units on this graph are megapascals and \%. This means the co-ordinates of the chosen point are in fact $\left(0.1 \times 10^{-2}, 120 \times 10^{6}\right)$. Many candidates forgot to convert the strain into a decimal and left it as a percentage. Their answer was a factor of a 100 out, ie answer B. The correct answer is $120 \times 10^{6} / 0.1 \times$ $10^{2}=1.2 \times 10^{11} \mathrm{~Pa}$. This is answer D. |
|  | Total | 1 |  |
| 2 7 | C | 1 |  |
|  | Total | 1 |  |

### 3.4 Materials



### 3.4 Materials

|  |  | Some energy dissipated as heat <br> as oscillates (because of air <br> resistance / friction) | B1 |
| :--- | :--- | :--- | :--- |
|  |  | Total |  |

### 3.4 Materials



### 3.4 Materials

|  |  |  |  | the reader. <br> Exemplar 3 <br> becorise the haxiounciun amplineur is Sth produced when the syztem is resorien whein is when the watural thequeven is equal to me drivini mequency and the vothen trequeny in $0.25 t=$ so resshent when dinisy treq $=0$. <br> The ball was often quoted as just acting against the tower to reduce the amplitude rather than using the clue at the end of the initial paragraph about the energy drawn from the tower being absorbed by the dampers. Hence the requirement for the ball to be given a large amplitude or absorb the maximum amount of energy. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 2 |  |
| 4 0 |  | Area increases by a factor of four / extension decrease by factor of four <br> Elastic strain energy decreases by a factor of four | M1 <br> A1 |  |
|  |  | Total | 2 |  |
| 4 1 | a | $\begin{aligned} & 2 \times T^{2}=4.8^{2} \text { or } 2 T \sin 45^{\circ}= \\ & 4.8 \text { or } T=4.8 \sin 45^{\circ} \\ & T=3.39(4)(\mathrm{N}) \end{aligned}$ | B1 B1 | Note: $\sin 45^{\circ}=\cos 45^{\circ}$ <br> Note: $T$ must be given to at least 3 SF <br> Examiner's Comments <br> This question was good discriminator, where the top-end candidates could demonstrate their powers of analysis. The success in (c) was very much dependent on a well-annotated triangle of forces in (b). Most triangle of forces were workable but lacked detail. Missing labels and incorrect direction of the force arrows were the main misdemeanours. As expected, candidates used a range of methods to show the force in the extended spring was 3.4 N . In order of popularity, the techniques were using Pythagoras' theorem, using trigonometry, resolving forces in the vertical direction and sine (or cosine) rule. It is sensible to show the final answer to more significant figures than required in a 'show' question. <br> Exemplar 6 |



### 3.4 Materials

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

### 3.4 Materials



### 3.4 Materials

|  |  |  |  | uncertainty in the mass and volume and then adding them together so gaining both marks. <br> An answer of $14 \%$ would have been acceptable. |
| :---: | :---: | :---: | :---: | :---: |
|  | b | $\begin{aligned} & \text { Extension }=0.096-0.078 \text { or } \\ & 0.018 \mathrm{~m} \\ & \text { Weight }=0.023 \times 9.81 \text { or } 0.22563 \\ & 13\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$ | C1 <br> C1 <br> A1 | Allow ECF for incorrect mass conversion from (iv) <br> Allow $12.6\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ or $12.5\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ <br> Examiner's Comments <br> The majority of the candidates clearly showed their working and calculated the force constant correctly. Some incorrectly used the energy stored equation. |
|  | c i | Apparent weight $=0.01 \times 13(=$ 0.13 N ) <br> (Upthrust $=0.226-0.13)=0.10$ <br> (N) | C1 | Allow ECF from (b) <br> Allow $0.008 \times 12.5$ <br> Allow 0.1 (N) (1sf) <br> Examiner's Comments <br> In this question, many candidates calculated the apparent weight and then incorrectly assumed that this was the upthrust. Other errors included using the incorrect values for length to determine the extension. Some candidates correctly determined the upthrust by determining the change in extension. |
|  |  | $\begin{aligned} & \rho=\frac{0.10}{9.81 \times 8.4 \times 10^{-6}} \\ & 1200\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$ | C1 A1 | Allow ECF from (i) <br> Examiner's Comments <br> Candidates generally found this last question challenging. Some candidates who did less well, attempted to use the equation for liquid pressure. Candidates who did well again clearly showed their reasoning. |
|  |  | Total | 15 |  |
| $\begin{aligned} & 4 \\ & 3 \end{aligned}$ | a | Arrow vertical down and an arrow opposite to the frictional force. <br> Both arrows labelled correctly. | M1 <br> A1 | Allow weight / mg / W for the downward arrow and tension / $T$ / 'force in rod' / 'force in tow bar' /'driving force' for the 'upward' arrow |
|  | b | $\begin{aligned} & \left(W_{\mathrm{s}}=\right) 1100 \times 9.81 \times \sin 10^{\circ} \text { or } \\ & 1100 \times 9.81 \times \cos 80^{\circ} \\ & \left(W_{\mathrm{s}}=1874 \mathrm{~N} \text { or } 1900 \mathrm{~N}\right) \end{aligned}$ | C1 <br> A0 | Allow $g$ instead of value |
|  | c | $\begin{aligned} & \text { force }=1900+300 \\ & \text { force }=2200(\mathrm{~N}) \end{aligned}$ | A1 | Allow $1870+300=2170$ (N) |

### 3.4 Materials

|  | d | (distance $=) 120 / \sin 10^{\circ}$ or 691 (m) <br> (work done =) $2200 \times 691$ <br> work done $=1.5 \times 10^{6}(\mathrm{~J})$ | C1 <br> C1 <br> A1 | Allow ECF from (c) <br> Allow ECF from an incorrect attempt at first mark. |
| :---: | :---: | :---: | :---: | :---: |
|  | e | $\begin{aligned} & \begin{array}{l} (A=) \pi \times \\ 0.006^{2} \end{array} \text { or } 1.1 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\ & (\text { stress }=) \frac{2200}{\pi \times 0.00} \frac{\mathrm{an}}{\underline{\mathrm{~d}}} 2.0 \times 10^{11}=\frac{\text { stre }}{\text { stra }} \\ & x=4.8 \times 10^{-5}(\mathrm{~m}) \end{aligned}$ | C1 <br> C1 <br> A1 | Allow ECF from (c) $\text { Allow } x(=F L / E A)=\frac{2174 \times 0.5}{2.0 \times 10^{11} \times 1.1 \times 10^{-4}}$ <br> Allow 2 marks for $1.2 \times 10^{-5} ; 1.2 \times 10^{-2} \mathrm{~m}$ used as radius Allow answer between 4.7 and $5.1 \times 10^{-5}(\mathrm{~m})$ |
|  |  | Total | 10 |  |
| $4$ | a | Data point plotted to within $\pm 1 / 2$ small square and correct line of best fit though all the data points. | B1 |  |
|  |  | Gradient of line determined. $\begin{aligned} & E=\text { gradient }=(8.8 \pm 0.1) \times 10^{10} \\ & (\mathrm{~Pa}) . \end{aligned}$ | M1 <br> A1 | Allow 1 mark for ( $8.8 \pm 0.1$ ) $\times 10^{n} \mathrm{~Pa}$; where $n \neq 10$ |
|  | b | The actual cross-sectional area will be smaller. <br> The actual stress values on the graph will be larger (because stress $\propto$ area $^{-1}$ ) <br> The gradient of the graph will be larger; hence the Young modulus of the metal must be larger than the student's value. | B1 <br> B1 <br> B1 |  |
|  |  | Total | 6 |  |
| 4 5 |  | $\begin{aligned} & 1.4 \times 10^{10}=\frac{1.1 \times 10^{5}}{\text { strain }} \\ & (\text { Any subject }) / \text { strain }=7.86 \times 10^{-6} \\ & x=\frac{1.1 \times 10^{5}}{1.4 \times 10^{10}} \times 2.3 \\ & x=1.8 \times 10^{-5}(\mathrm{~m}) \\ & \text { or } \\ & 1.1 \times 10^{5}=\frac{6500}{A} \\ & A=0.059\left(\mathrm{~m}^{2}\right) \end{aligned}$ | C1 <br> C1 <br> A1 | Possible ECF from (a) |

### 3.4 Materials


### 3.4 Materials



### 3.4 Materials

| 4 9 | i | Elastic: material returns to original dimensions when load is removed. <br> Plastic: material has permanent change of shape when load is removed. | B1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ii | The material is elastic because the removal of force returns the rubber to its original length. <br> The area under force-extension graph is work done. <br> Repeated stretching and releasing the rubber warms up the rubber because not all the strain energy is returned back. The area enclosed represents the amount of thermal energy. During landing, some of the aeroplane's kinetic energy is transferred to thermal energy and therefore the aeroplane does not "bounce" during landing; hence this minimises the risk to passengers. | B1 <br> B1 <br> B1 | Mentioning 'hysteresis' is not enough to gain this mark. |
|  |  | Total | 4 |  |
| 5 | i | (Area under graph =) energy / elastic potential energy | B1 | Allow work done on the elastic band |
|  | ii | (Area of) $1 \mathrm{~cm}^{2}$ is $0.025 \times 2.5 \mathrm{~J}$ or 0.0625 J $(31 \times 0.0625=) 1.9(\mathrm{~J})$ | C1 <br> A1 | Allow other alternatives. <br> Do not accept 0.5Fx |
|  |  | Energy transferred to the surroundings / heating the rubber | B1 |  |
|  |  | Total | 4 |  |
| 5 1 | i | $\begin{aligned} & R(=\rho L / A)=1.8 \times 10^{-8} \times \\ & 1500 / 1.1 \times 10^{-4} \end{aligned}$ $R=0.25(\Omega)$ | C1 <br> A1 |  |
|  | ii | $\begin{aligned} & E=\sigma / \varepsilon=T / A \varepsilon(\text { so } T=E A \varepsilon) \\ & T=1.2 \times 10^{10} \times 1.1 \times 10^{-4} \times 0.013 \\ & T=1.7 \times 104(\mathrm{~N}) \text { or } 17(\mathrm{kN}) \end{aligned}$ | C1 <br> C1 <br> A1 | or calculation of $\sigma=1.56 \times 10^{8}\left(\mathrm{Nm}^{-2}\right)$ <br> or $\mathrm{T}=1.56 \times 10^{8} \times 1.1 \times 10^{-4}$ |
|  |  | Total | 5 |  |
| 5 2 | i | $\omega^{2}=k / m$ or $(2 \pi f)^{2}=k / m$ or $k A=$ $\operatorname{mamax}^{2}$ $k=\left(m 4 \pi^{2} f^{2}\right)=6.6 \times 10^{5} \times(2 \pi \times$ | C1 <br> M1 | allow $\omega$ or $\omega^{2}=0.88$ or 0.89 quoted from (a) ecf value of A from (a) |

### 3.4 Materials

|  |  | $\begin{aligned} & 0.15)^{2} \\ & \text { or }(k=\operatorname{mamax} / \mathbf{A})=6.6 \times 10^{5} \times \\ & 0.05 / 0.056 \\ & k=5.9 \times 10^{5}\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$ | A1 | as this is a 'show that' question some definite evidence of working must be shown. <br> not $k=6 \times 10^{5}$ allow answer to 2 or more SF. |
| :---: | :---: | :---: | :---: | :---: |
|  | ii | $\begin{aligned} & E=1 / 2 k A^{2}==0.5 \times 5.9 \times 10^{5} \times \\ & 0.71^{2} \\ & E=1.5 \times 10^{5}(\mathrm{~J}) \end{aligned}$ | C1 A1 | allow value from (c)(i) or 6; <br> or $\mathrm{a}=(\mathrm{k} / \mathrm{m}) \mathrm{A}, \mathrm{F}=\mathrm{ma}, \mathrm{E}=1 / 2 \mathrm{FA}$ <br> accept 1.48 to 1.51 or value from ecf <br> special case: give $1 / 2$ for $E=3(.0) \times 10^{5}(\mathrm{~J})$ where it is clear that 2 k has <br> been used as the spring constant <br> Examiner's Comments <br> The exercise in this section completed successfully by most candidates was to perform standard calculations stating correct formulae and showing clear working to determine the required quantities. The example (exemplar 4) shown here is of a typical neat script. <br> The most common error was to forget to square quantities in part (ii) or to use the amplitude calculated part (a) rather than the figure given in the stem of this part. <br> Exemplar 4 $\begin{aligned} & a=-\frac{u}{m} x \quad \frac{0.05}{0.056} \times\left(6.6 \times 10^{5}\right)=k \\ & 0.05=-\frac{k}{\left(6.610^{5}\right)}(0.056) \quad k=5.89 \times 10^{5} \\ & \\ & \quad k \approx 6 \times 10^{5} \mathrm{Nm}^{-1} \end{aligned}$ [3] $\begin{array}{ll} \omega=2 \pi f & \frac{0.050}{(0.30 \pi)^{2}}=x \\ \omega=0.30 \pi & x=0.056 \\ a=-\omega^{2} x & \end{array}$ $\text { maximum displacamentent } 0.056$ <br>  <br> Second varient for M1 given with evidence of working. $\begin{aligned} & E=\frac{1}{2} h x^{2} \quad \text { My value of } k \\ & E=\frac{1}{2}\left(5.89 \times 10^{5}\right)(0.71)^{2} \\ & E=148529.46 \\ & E=1.49 \times 10^{5} \text { energy transferred }=. . .1 .49 \times 10^{\mathrm{s}} \end{aligned}$ |
|  |  | Total | 5 |  |
| 5 3 | i | $(230 \pm 40) \mathrm{M} \mathrm{Pa}$ | B1 |  |
|  | ii | $\begin{aligned} & \text { Stress }=1.1 \times 10^{6} /\left(\Pi \times 0.045^{2}\right)= \\ & 173 \mathrm{MPa} \\ & 173 \mathrm{MPa}<230 \mathrm{MPa} \end{aligned}$ | C1 A1 | AW (ecf) |

### 3.4 Materials

|  | ii | So will not stretch too much in | B1 | Allow any sensible contextual suggestion |
| :---: | :---: | :---: | :---: | :---: |
|  | ii | Less chance of permanent deformation or fatigue | B1 |  |
|  |  | Total | 5 |  |
| $5$ | i | Use a micrometer / (Vernier) caliper <br> Measure the diameter along its length in different directions (to ensure uniform cross-section) AW | B1 <br> B1 | Allow either along length or in different directions |
|  | ii | 1. Any value between 0 and 2.0 (kN) <br> 2. Any value between 2.0 and 2.2 (kN) | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ |  |
|  | ii | $\begin{aligned} & k=\text { gradient } \\ & k=5.0 \times 10^{5}\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$ | C1 <br> A1 | Allow 1 mark for $5.0 \times 10^{n} ; \mathrm{n} \neq 5$ Allow $5 \times 105\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ |
|  |  | Total | 6 |  |
| $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | i | (Sum of clockwise moments = sum of anticlockwise moments)$\begin{aligned} & 95 \times 9.81 \times 1.80 / 120 \times 9.81 \times \\ & 1.00 / 1.60 \times T \sin 30^{\circ} \\ & (95 \times 9.81 \times 1.80)+(120 \times 9.81 \times \\ & 1.00)=1.60 \times T \sin 30^{\circ} \\ & T=3.6 \times 10^{3}(\mathrm{~N}) \end{aligned}$ | C1 |  |
|  |  |  | C1 |  |
|  |  |  | A1 | Note answer to 3 s.f. is $3.57 \times 10^{3}(\mathrm{~N})$ |
|  | ii | $\sigma=\frac{3.6 \times 10^{3}}{\pi \times 0.015^{2}}$ | C1 | Possible ECF from part (i) |
|  | ii |  | A1 | Allow 1 mark for $5.1 \times 10^{6}$; POT error <br> Note using $3.57 \times 10^{3} \mathrm{~N}$ gives $5.05 \times 10^{3}(\mathrm{kPa})$ |
|  | ii | The clockwise moment increases and therefore $T$ increases. | B1 |  |
|  |  | Total | 6 |  |
| 5 6 |  | Level 3 (5-6 marks) <br> Clear correct explanation of terms and correct comparison of materials <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. | $\begin{gathered} \text { B1 x } \\ 6 \end{gathered}$ | Indicative scientific points may include: <br> Explanation of terms <br> - elastic : material returns to original length (when load removed) <br> - plastic: material permanently deformed (when load removed) <br> - brittle: elastic behaviour (only) up to breaking point/ will not deform before breaking <br> - ductile: elastic and plastic regions before the material breaks / able to be (permanently) deformed / stretched / bent without breaking |

## Level 2 (3-4 marks)

Clear correct explanation of terms or correct comparison of materials or has some clear correct explanation of terms and some correct comparison of materials

There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.

## Level 1 (1-2 marks)

Has limited correct explanation of terms and limited correct comparison of materials

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

## 0 marks

No response or no response worthy of credit.

- UTS: maximum (tensile) stress a material can withstand
- Young modulus = stress /strain
- Young modulus = gradient of stress-strain graph


## Comparison of materials

- Both have elastic regions
- $\mathbf{K}$ is elastic
- J has a plastic region, $\mathbf{K}$ does not have a plastic region
- $\mathbf{J}$ is ductile
- $\mathbf{K}$ is brittle
- gradient of $\mathbf{J}$ is greater than $\mathbf{K}$
- Young modulus of $\mathbf{J}$ is greater than $\mathbf{K}$
- UTS of $\mathbf{J}$ is greater than $\mathbf{K}$


## Examiner's Comments

This was the first level of response question. A good range of marks from zero to six were credited.

This type of question allows candidates to demonstrate structuring an answer logically using appropriate terms correctly. To achieve the highest marks, candidates needed to explain all six terms and compare the two materials using the terms. Some candidates in their answer included a discussion of Hooke's law.

Candidates who did not achieve a Level 3 response, often did not include all the terms or incorrectly described some of terms. Often ultimate tensile strength was not understood. Answers could have been improved by explaining why the gradient was an indication of the Young modulus. Many candidates did not state that an elastic material returned to its original length when a load was removed.

Some candidates who did less well, attempted to describe the material in terms of named materials, often incorrectly, e.g. J was rubber.

## Exemplar 3

$$
\begin{aligned}
& \text { Materid } \sigma \text { is dustile. Thi mens the materid undegpes a a } \\
& \text { Cangennont of pustic delomation bfoc buxleing and so is wesel.... } \\
& \text { for things He mines. Matenial } k \text { is bittle because it } \\
& \text { doessuct medergo phatic defometion of all but it recches }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Elati deromention meens } t \text { atury to to oyind hopa mese to }
\end{aligned}
$$

before 2naking

The candidate has explained all the terms and there is a comparison of the two materials. The reference to Hooke's law is acceptable and does not detract from the answer and is not irrelevant.

### 3.4 Materials

|  |  |  | The candidate's reasoning is clear and logically structured. This is a Level 3, 6-mark answer. |
| :---: | :---: | :---: | :---: |
|  | Total | 6 |  |
|  | * Level 3 (5-6 marks) <br> All points E1, 2, 3 and 4 for equipment <br> All points M1, 2, 3 and 4 for measurements <br> For calculations expect $\mathrm{C} 1, \mathrm{C} 2$, <br> C3 and C4 <br> Expect at least two points from reliability <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. <br> Level 2 (3-4 marks) <br> Expect E1 and E2; E3 or E4 for equipment <br> Expect M2 and two from M1, M3, M4 for measurements <br> For calculations expect at least C3 and C4 <br> Expect at least one point from reliability <br> There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. <br> Level 1 (1-2 marks) <br> Expect at least E1 and E2 for equipment <br> Expect at least two from measurements <br> Expect C5 for the calculation No real ideas for obtaining reliable results <br> The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. <br> 0 marks | B1 $\times$ 6 | The complete plan consists of four parts: <br> Equipment used safety (E) <br> 1. Wire fixed at one end with load added to wire. <br> 2. Suitable scale with suitable marker on wire. <br> 3. Micrometer screw-gauge or digital / vernier callipers for measuring diameter of wire. <br> 4. Reference to safety concerning wire snapping. <br> Measurements (M) <br> 1. Original length from fixed end to marker on wire. <br> 2. Diameter of wire. <br> 3. Measure load. <br> 4. New length of wire when load increased. <br> Calculation of Young modulus. (C) <br> 1. Find extension (for each load) or strain (for each load). <br> 2. Determine cross-sectional area or stress. <br> 3. Plot graph of load-extension or graph of stress-strain. <br> 4. Young modulus $=$ gradient $\times$ original length $/$ area or Young modulus = gradient. <br> 5. Calculate Young modulus from single set of measurements of load, extension, area and length. <br> Reliability of results (R) <br> 1. Measure diameter in 3 or more places and take average. <br> 2. Put on initial load to tension wire and take up 'slack' before measuring original length. <br> 3. Take measurements of extension while unloading to check elastic limit has not been exceeded. <br> 4. Use long wire (to give measurable extension). <br> Scale or ruler parallel to wire. |

### 3.4 Materials

|  |  | No response or no response <br> worthy of credit. |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Total |  |  |  |  |

### 3.4 Materials

| Total |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |



### 3.4 Materials

|  |  |  |  | (iii) The cables $\mathbf{A}$ and $\mathbf{B}$ have the same length and cross-sectional area. The material:of-cable $\mathbf{B}$ 'has-Young modulus $1.29 E$, where $E$ 'is the-Young modulus of the material of cable A. <br> Both cables obey Hooke's law. <br> ratio $=$ $\qquad$ [2] <br> This exemplar shows a response from a top-grade candidate. The solution is much more elaborate and the response of 0.996 is given to 3 significant figures. A perfect solution that earned this candidate 2 marks. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 6 |  |
|  |  | Level 3 (5-6 marks) <br> Clear description and clear analysis <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. <br> Level 2 (3-4 marks) <br> Some description and some analysis <br> or <br> Clear description or Clear analysis <br> There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. <br> Level 1 (1-2 marks) <br> Limited description or <br> Limited analysis <br> There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. <br> 0 marks <br> No response or no response worthy of credit. | $\begin{gathered} \text { B1× } \\ 6 \end{gathered}$ | Use level of response annotation in RM Assessor. <br> Indicative scientific points may include: <br> Description <br> - Determine $T$ by measuring several oscillations <br> - Independent and dependent variables identified (e.g. $L$ and $T$ ) <br> - Variables kept constant (e.g. for L and T experiment, $m$ is kept constant) <br> - Repeating to determine average $T$ <br> - Measure length $L$ and width $w$ with ruler <br> - Measure thickness $t$ with a vernier (calliper) / micrometer <br> - Use video/phone camera / stopwatch / data-logger and motion sensor / light gates and timer <br> - Use top-pan balance / scales to measure $m$ <br> Analysis <br> - Plot an appropriate graph, e.g. $T^{2}$ against $L^{3}$ or tabulate $T^{2} \div L^{3}$ <br> - Gradient of best line determined or average of $T^{2} \div L^{3}$ <br> - Use a large triangle to determine gradient <br> - Gradient (or equivalent) related to E, e.g. gradient $=16 \pi^{2} m / w E t^{3}$ for $T^{2}$ against $L^{3}$ graph <br> Examiner's Comments <br> This part tested ideas about investigative experiments: there was a solid focus on elements of data-taking and instruments that should be used. Typically at A Level, analysis should include an appropriate graph and a comparison between the line of best fit and the equation under test. Putting the general equation below the given equation would make it much clearer how the candidate linked the gradient or y-intercept with the required property. |
|  |  | Total | 6 |  |

### 3.4 Materials



|  |  | i <br> V | $\frac{1}{2} \times 49 \times 0.0043$ <br> $0.10(\mathrm{~J})$ | C1 |
| :--- | :--- | :--- | :---: | :--- |
| Allow ECF from (b)(i), (ii) and (iii) |  |  |  |  |
|  |  | Dotal not accept 1 sf |  |  |

